

Institute of Physics of the Czech Academy of Sciences

Optical spectroscopy and biosensors for investigation of biomolecules and their interactions

Jakub Dostalek

AIT - Austrian Institute of Technology GmbH Biosensor Technologies Unit Konrad-Lorenz-Strasse 24 | 3430 Tulln | Austria T +43(0) 664 2351773 **FZU – Institute of Physics of the Czech Academy of Sciences**, Na Slovance 1 | Prague 182 00 | Czech Republic T+420 776767927

jakub.dostalek@ait.ac.at | http://www.ait.ac.at | http://www.jakubdostalek.cz

Fluorescence Spectroscopy II

Content

- Fluorescence emission at dielectric interface: super critical fluorescence (SAF)
- Fluorescence emission at metallic interface: quenching vs. enhancement
- Surface plasmon field-enhanced fluorescence spectroscopy (SPFS)
- Metallic nanostructure-enhanced fluorescence
- Bloch surface wave-enhanced fluorescence
- Two-photon fluorescence excitation
- Fluorescence lifetime readout of assays

Fluorescence Immunoassays

 Schematics of a typical implementation of a fluorescence sandwich assay (left) and a respective reader (right).

•https://doi.org/10.1364/OE.19.008011

Emission at a Dielectric Interface (λ_{em})

https://doi.org/10.1364/OPEX.12.004246

Perpendicular

Polar plots of the emission direction of isotropically oriented fluorophores with (a) a surface distance of zero and (b) a surface distance equal to a third of the emission wavelength in vacuum

Emission pattern collected for individual emitter

At a glass substrate, the majority of emitted fluorescence light travels in the substrate above the critical angle and thus is trapped.

Supercritical Angle Fluorescence (λ_{em})

An implementation of arrays of parabolic mirrors embossed to a plastic chip for enhanced extraction of the fluorescence light (MacCraigth group).

High Efficiency Extraction with Dielectric Structures (λ_{em})

0.1038/NPHOTON.2010.312

96% collection efficiency demonstrated by using TIR with emitters embedded in dielectric layer (Sandoghar group).

Surface Plasmon-Coupled Emission (λ_{em})

https://doi.org/10.1016/S0091-679X(04)75004-9

60% collection efficiency can be achieved by using reverse Kretschamnn configuration for surface plasmons on gold in the red part of spectrum. Investigated by Lakowicz group.

Surface Plasmon-Coupled Emission (λ_{em})

https://doi.org/10.1016/S0091-679X(04)75004-9

Photography of surfaceplasmon-coupled emission cone for multifluorophore sample

Surface plasmon-coupled emission is manifested as a cone generated by a hemispherical prims / lens.

Surface Plasmon-Enhanced Fluorescence (λ_{ex})

Colloids and Surfaces A: Physicochemical and Engineering Aspects 171 (2000) 115–130

www.elsevier.nl/locate/colsurfa

Surface-plasmon field-enhanced fluorescence spectroscopy

Thorsten Liebermann *, Wolfgang Knoll

Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

Surface Plasmon-Enhanced Fluorescence (λ_{ex})

Combination of surface plasmon resonance (SPR) and surface plasmon field enhanced fluorescence excitation (SPFS).

Surface Plasmon-Enhanced Fluorescence (λ_{ex})

Comparison of SPR and SPFS for investigation of short oligonucleotide hybridization.

Surface Plasmon-Enhanced Fluorescence (λ_{ex} , λ_{em})

Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson & G. P. Davidson

Serono Diagnostics Ltd., Unit 21, Woking Business Park, Albert Drive, Woking, Surrey GU21 5JY, UK

(Received 4 May 1990; revised version received 7 August 1990; accepted 9 August 1990)

Biosensors & Bioelectronics 6 (1991) 201-214

Surface Plasmon-Enhanced Fluorescence (λ_{ex} , λ_{em})

Plasmon-Enhanced Fluorescence:

Confined field of surface plasmons at λ_{ab} and λ_{em} can<u>amplify</u> fluorescence signal from emitters

- Coupling at λ_{ab} by enhanced field intensity $|E/E_0|^2$ locally increasing excitation rate γ_e .
- Coupling at λ_{em}, surface plasmon-coupled emission – directional emission for extracting of fluorescence light from the surface.
- Enhancement fluorescence signal intensity by a factor *EF* >10²-10³

16

Plasmon-Enhanced Fluorescence

Modified Jablonski diagram with transitions facilitated by surface plasmons:

excitation rate γ_e
radiative emission rate γ_r
non-radiative emission rate γ_{nr}.

Plasmon-Enhanced Fluorescence Excitation

M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek, Surface plasmon-enhanced fluorescence biosensors: a review, Plasmonics (2014), 9 (4), 781-799.

Plasmon-Enhanced Quantum Yield

Quantum yield of a free molecule η_0 is amended by competing plasmonenhanced radiative and non-radiative transitions

Plasmon-Enhanced Fluorescence Extraction Yield

Exploiting directional surface plasmon-coupled emission allows to collect up to 60 % of emitted light and suppressing background.

Yuk JS, Trnavsky M, McDonagh C, MacCraith BD (2010) Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosens Bioelectron 25(6):1344–1349

Plasmonic Amplification for Compact Readers (λ_{ex} , λ_{em})

K. Toma, Dostalek, Compact surface plasmon-enhanced fluorescence biochip, Optics Express (2013), 21(8), 10121-10132.

M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, J. Dostalek, Surface plasmon-coupled emission on plasmonic Bragg gratings, Optics Express, (2012), 20(13), 14042.

Plasmonic Fluorescence Amplification for Microarrays (λ_{ex} , λ_{em})

Tailored plasmonic resonances by using **multiperiod plasmonic gratings** for fluorescence enhancement by coupling at fluorophore label at λ_{ex} and λ_{em} for imaging of arrays of spots.

S. Fossati, S. Hagender, S. Menad, E. Maillart, J. Dostalek, Multi-resonant plasmonic nanostructure for ultrasensitive fluorescence biosensing, 2020, Nanophotonics, in press.

J. Dostalek, et al., Plasmon-enhanced fluorescence spectroscopy imaging by multi-resonant nanostructures, European Patent Application No. 19164960.7

Two-Resonant Plasmonic Nanostructure for PEF

Stefan Fossati, Simone Hagender, Samia Menad, Emmanuel Maillart, Jakub Dostalek, Multi-resonant plasmonic nanostructure for ultrasensitive fluorescence biosensing, 2020, Nanophotonics, in press.

J. Dostalek, W. Knoll, S. Fossati, S. Hageneder, V. Jungbluth, Plasmon-enhanced fluorescence spectroscopy imaging by multi-resonant nanostructures, European Patent Application No. 19164960.7

Surface Plasmon-Coupled Emission

Stefan Fossati, Simone Hagender, Samia Menad, Emmanuel Maillart, Jakub Dostalek, Multi-resonant plasmonic nanostructure for ultrasensitive fluorescence biosensing, 2020, Nanophotonics, in press.

J. Dostalek, W. Knoll, S. Fossati, S. Hageneder, V. Jungbluth, Plasmon-enhanced fluorescence spectroscopy Imaging by multi-resonant nanostructures, European Patent Application No. 19164960.7

Plasmonic Enhancement of Affinity Binding Response

 Λ_1,Λ_2

E Enhancement factor (*EF*):

Polarization	II	\perp
$\Lambda_2 \text{ or } \Lambda_3$	3.7 ×	3.7 ×
$\Lambda_{1,2}$ or $\Lambda_{1,3}$	248 ×	17 ×
Λ _{1,2,3}	300 ×	25 ×

Stefan Fossati, Simone Hagender, Samia Menad, Emmanuel Maillart, Jakub Dostalek, Multi-resonant plasmonic nanostructure for ultrasensitive fluorescence biosensing, 2020, Nanophotonics, in press.

J. Dostalek, W. Knoll, S. Fossati, S. Hageneder, V. Jungbluth, Plasmon-enhanced fluorescence spectroscopy Imaging by multi-resonant nanostructures, European Patent Application No. 19164960.7

Plasmonic Enhancement of Affinity Binding Response at λ_{ex} and λ_{em}

- Fluorescence intensity enhancement of EF=300 was observed for structure engineered to couple with emitters at both λ_{ab} and λ_{em} .
- **LOD = 6 fM** was achieved for a model immunoassay with about 50 spots on chip.
- Capability of kinetics measurements of affinity interactions (background due to bulk is suppressed).

Stefan Fossati, Simone Hagender, Samia Menad, Emmanuel Maillart, Jakub Dostalek, Multi-resonant plasmonic nanostructure for ultrasensitive fluorescence biosensing, 2020, Nanophotonics, in press.

J. Dostalek, W. Knoll, S. Fossati, S. Hageneder, V. Jungbluth, Plasmon-enhanced fluorescence spectroscopy Imaging by multi-resonant nanostructures, European Patent Application No. 19164960.7

Full MPG structure

> Probed area

Reference

flat surface

Flowcell inlet

nature

photonics

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna

Anika Kinkhabwala¹, Zongfu Yu², Shanhui Fan², Yuri Avlasevich³, Klaus Müllen³ and W. E. Moerner^{1*}

Fluorescence intensity enhancement of *EF*>10³ was demonstrated for individual emitters coupled to strongly confined field of localized surface plasmons.

Bloch Surface Waves

- 1D Photonic crystals (1DPC) can be design to support Bloch surface waves (BSW) and exhibit a bandgap at specific wavelengths.
- BSWs are similar to surface plasmons, but offer the advantage of less damping as the supporting multilayer structure is all dielectric.

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F.Giorgis, A.Mateescu, U. Jonas, W. Knoll, J. Dostalek, Bloch Surface Wave-Enhanced Fluorescence Spectroscopy Biosensor, Biosensors and Bioelectronics (2013), 43, 108-114.

Bloch Surface Wave – Enhanced Fluorescence

Example of combined BSW-enhanced excitation (left) and directional 1DPC – controlled emission angular fluorescence distribution (right).

K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F.Giorgis, A.Mateescu, U. Jonas, W. Knoll, J. Dostalek, Bloch Surface Wave-Enhanced Fluorescence Spectroscopy Biosensor, Biosensors and Bioelectronics (2013), 43, 108-114.

Multiphoton-Photon Fluorescence

https://sites.middlebury.edu/durst/research/

- Requires using of strong excitation field is this is non-linear optical process, enables squeezing the excitation volume (excitation ~ E^4).
 - Emission occurs at shorter wavelength λ_{ex} than the excitation one λ_{em} .

Photon Up-Conversion for Fluorescence Assays

Example of digital readout of sandwich assay enabling improving the LOD by a factor of ~ 16.

Emission at shorter wavelength λ_{ex} allows more efficient subtracting background (elimination of the autofluorescence, large difference between λ_{ex} and λ_{em} .

10.1021/acs.analchem.9b02872

Time-Resolved Fluorescence

https://www.moleculardevices.com/technology/timeresolved-fluorescence-trf-tr-fret-htrf#gref

The virtual background-free measurement provided by filtering (fast) autofluorescence based on time-delayed luminescence signal collection.